翻訳と辞書 |
Saturated measure : ウィキペディア英語版 | Saturated measure In mathematics, a measure is said to be saturated if every locally measurable set is also measurable.〔Bogachev, Vladmir (2007). ''Measure Theory Volume 2''. Springer. ISBN 978-3-540-34513-8.〕 A set , not necessarily measurable, is said to be locally measurable if for every measurable set of finite measure, is measurable. -finite measures, and measures arising as the restriction of outer measures, are saturated. ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Saturated measure」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|